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Task: WSMR requested our capstone team to design, Side view of the The design phase began with evaluating weight
develop, and prototype a lightweight gimbal unit for ohysical gimbal unit constraints, gimbal motion, and sensor selection
integration with the DJI Matrice RTK Drone. showing the dual-axis requirements.
The system was required to: stabilization Desigh Concepts Considered:

 Weigh less than 15 |b. mechanism.  Material Selection: Selected Polylactic Acid (PLA)

* Integrate a wide FOV camera, zoom camera, and Carbon Fiber materials to ensure the full gimbal

thermal camera, and a laser rangefinder.
* Includes user-defined object selection, allowing

unit remained light weight without compromising
Mission Planner software structural strength.

the operator to select and box a target of interest providing real-time feedback on * Multi-Axis Stabilization: Designed a 3-axis gimbal
within the video feed. data f the Pixhawk to th 43 {| aircraft state, GPS lock, sensor (pitch, roll, yaw) to ensure smooth target tracking in
e Utilize a custom video tracking algorithm to dta from the Fixnawk 1o the TR 1 ok S o) health, and orientation. dynamic flight conditions.

Raspberry Pi to generate real-time | | EEr_s

generate TSPl at 20 Hz for a tracked target. op

 (Capable of storing on board and transmitting the

* Sensor Integration: Evaluated placement and
orientation for a wide FOV camera, zoom camera,

TSPI data. _ _ _ and laser rangefinder to ensure unobstructed fields
Our team developed a modular, multi-sensor gimbal Video Tracking Subsystem Mechanical Test Results (Motors) of view.
system that reliably tracks moving targets in real time. * Custom Video Tracking: Implemented a Python-
This project emphasized performance, reliability, and Purpose: Enable the gimbal to follow and generate TSPI Purpose: To evaluate the mechanical stability based OpenCV algorithm to track targets in real time
seamless integration with WSMR’s existing platforms. data points for a selected target. and motion control of the gimbal, the motors and generate TSPI at 20 Hz.
e Im Pr ing: Live vi frames from the gimbal- wer forr nsiven r : : .
aget docess g: Live video tra Zst © " & Ib?t c e.ttested 0 despo tsh © ess]: to c}1[|.ue The final design reflects a balance between electrical
moun mera are pre-pr nhan rity. nsisten nd sm n motion. : : : : .
Research - ounted ca e, ada < pre ptodcisse ° el . Coelﬁl’? yd €0 I\S/IS te c;/,la t's O‘?h tess 0 I Otod 5 integration, algorithmic control, and mechanical
ram re resiz nver r nd filter . r ion: m iPower : : .
AMES are Tesized, CONVETTEl 1o graystale, o ore otor Sefectio © tedm Selecied Irowe performance to ensure real-time aerial tracking
to reduce noise—improving visibility of key features for GM5208-24 brushless gimbal motors due capabilities
+ Gimbal Stabilization and Dynamics: Investigated selection. to their high torque-to-weight ratio ideal
gyroscopic stabilization principles and multi-axis * Object Selection: Not knowing what objects will need to for stabilization tasks. I AT
simbal configurations (pitch, yaw, roll) to ensure be tracked, the algorithm was designed to allow the user| | Range of Motion: Each axis was tested '
V4 V4
orecise orientation and smooth tracking under to select the target. Once selected, a bounding box is independently to confirm full rotation
variable flight conditions. placed around it, confirming that the target is locked. capability within the desired limits. The
« Sensor Integration: Researched the operational * Target Tracking: Once selected, the system applies the gimbal achieved sufficient pitch and yaw.
L CSRT (Discriminative Correlation Filter with Channel and | |* Responsiveness Testing: Motor response to
characteristics of thermal cameras, laser range- . o . . . | . |
finders, wide-angle, and zoom cameras, with a focus Spatial Reliability) algorithm. This tracking method algorithm-generated orientation
’ ’ ’ . . .. o . . T T—— Converting Distance obtain_ing position Tra nsl:-ating target e
on optimizing their placement for uninterrupted data continuously updates the object’s position, even when commands was tested using manual inputs j> crosmesere | | S || ek | oo | cotwein || 2T,
acquisition partially obscured or in motion. and simulated tracking data. The motors = i )
. Time Space Position Information (TSPI) Generation: e Calculation: 3-step process demonstrated minimal lag and stable
Studied the STANAG 4601 (ST-0601) format used by ' D.etermme the position of the G/mbgl — Uses the movement, essential for real-time object References
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